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Diffraction Analysis of Slanted-Finger
Interdigital Transducers
Guenter Martin and Dongpei Chen, Member, IEEE

Abstract—For analysis, slanted-finger interdigital transducers
(SFITs) are usually divided into many channels in parallel to the
propagation direction. Every channel is considered to be a subfilter.
This procedure neglects the diffraction completely. This paper in-
troduces the diffraction in the SFIT analysis by use of the angular
spectrum of plane waves (ASPW) approach. The analysis is based
on a one-component bulk-wave model. The integrals of an ASPW
are carried out by summing up wave components with various
wave vectors. Two wave modes propagating toward both forward
and backward directions within SFIT are assumed to take the cou-
pling effect into account. The amplitudes of both wave modes are
expressed by -dimensional vectors. By means of the boundary
conditions at every finger edge, the transfer matrix and transduc-
tion vector are found. As a result, coupling-of-modes-like equations
that link wave components at adjacent finger and gap regions are
obtained. Those wave vectors are generally inclined with respect
to each other. As a consequence, the transfer matrix, for instance,
of any finger and that of the total SFIT are 2 2 matrices.
By matrix–matrix and matrix–vector multiplication, the complex
amplitudes of all the wave components in all the finger and gap
regions are calculated. These amplitudes yield the total wave field
including reflection at all fingers. The wave field yields the piezo-
electric part of the input and output transducer currents as func-
tions of the filter input and output voltages representing the piezo-
electric part of the matrix. The model is used for analyzing a
unidirectional SFIT filter, the transducers of which are composed
of SPUDT cells on 370 quartz. The simulated transmission
behavior is compared with experimental results. Good agreement
is found. Especially for the case of a large slanted angle, the pro-
found deformation appearing within the passband and the high-
frequency transition band can be clearly identified as the most im-
portant influence of the diffraction on the transmission behavior.

Index Terms—Diffraction analysis, SAW transducers, slanted
electrodes, unidirectional SFIT filter.

I. INTRODUCTION

SLANTED-FINGER interdigital transducers (SFITs) were
first suggested by van den Heuvel in 1972 [1]. Instead

of SFITs, other expressions, such as a tapered transducer or
fan-shaped transducer are also used. All the SFIT structures are
characterized by finger arrangements like a divergent bundle.
Later, in particular, in the 1990s, SFITs became important for
wide-band filters with flat passband, steep skirts, and good
stopband rejection [2]–[11]. Saw and Campbell [9], as well as
Solie [10] suggested to combine tapered electrode structures
and single-phase interdigital transducer (SPUDT) cells. As a
consequence, reflectionless SFITs are feasible, in particular, by
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weighting the cell reflection coefficient. From [12], it is known
that a SPUDT can be made reflectionless in a favorable manner
when the reflection weighting function is the self-convolution
of the transduction weighting function. Now, this can also be
applied to SFITs. The triple transit echo is negligible. SPUDTs
are applicable for narrow-band low-loss filters. Now, however,
according to [9] and [10], wide-band low-loss filters can be
realized. In this paper, such transducers are called unidirec-
tional slanted-finger interdigital transducers (USFITs). To meet
filter specifications, transduction weighting is required as a
rule. Some weighting methods were investigated, for instance,
withdrawal weighting [5], [6] and series block weighting [10],
[11], which is sometimes called capacitive weighting.

For analysis usually used (for instance, [4]–[11]), SFITs are
divided into many channels in parallel to the propagation direc-
tion. Every channel is considered to be a subfilter to be indepen-
dent of the other subfilters. This procedure neglects the diffrac-
tion completely. As an influence of the diffraction, interaction
of subfilters must be expected. Chvetset al. [11] studied the
influence of the diffraction on the transmission behavior of an
SFIT filter experimentally by varying the transducer aperture.
Measurements showed that, for small apertures, some deviation
from predictions in the passband and upper transition band exist,
and are likely caused by neglecting diffraction effects.

The purpose of this paper is to propose an analysis method
for SFIT filters taking diffraction into account. For this, the an-
gular spectrum of plane waves (ASPW) approach is used. This
approach uses the general solution of the linear wave equation.
According to [14], this solution is an integral over plane-wave
components with as an integration variable, as shown in the
following:

(1)

The angle is the tilt angle of the wave vector of the re-
spective plane-wave component with respect to the-axis and

is the angle-dependent wave vector. The integral bound-
aries in (1) are an approximation. The function can
be calculated from the initial state of the wave field by
Fourier transformation. If and are known, the wave
field can be calculated by means of (1).

II. SCATTERING OF ANANGULAR SPECTRUM OFPLANE WAVES

AT A SLANTED-FINGER EDGE

Fig. 1 schematically shows the transducer structure of an
SFIT filter.
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Fig. 1. Sketch of an SFIT filter.

Fig. 2. Geometric characterization of an electrode edge (n = tilt angle,~p =
edge normal vector).

By means of Fig. 1, we want to explain some important angle
definitions, which are necessary for analysis. The range of the
electrode edge tilt angle is defined, for instance, for the left SFIT
as follows:

(2)

is the total finger number per SFIT. In Fig. 1, is de-
noted by . is the tilt angle of the th electrode edge. It is
defined as a positive angle when tilt is clockwise, but as a neg-
ative one when tilt is counterclockwise. is the angle that is
formed by the component of the ASPW with the wave vector,
with the main propagation direction visualized by a dashed line
in Fig. 1.

Let us now discuss the scattering of waves that can be char-
acterized by an ASPW. To do this, Fig. 2 shows that a slanted
electrode edge is used. This edge separates a free and a metal-
lized region and , respectively. It is a straight line and is
described by the following:

(3)

The vector is the normal vector of the edge. The one-com-
ponent model from [13] is used for analysis. It is similar to the
crossed-field model, but it does not apply equivalent circuits
for characterizing electrodes or transducer periods. That model
yields a wave equation for one particle displacementof every
plane-wave component within theth region of

(4a)

where is the coordinate along the propagation direction that
is slanted by the angle with respect to the main propagation
direction. According to the model considered, there is only one

elastic stiffness and one piezoelectric constant, which can
be denoted as an effective piezoelectric constant. They are at-
tributed to the known surface acoustic wave (SAW) parameters’
velocity , coupling coefficient , and capacity/(finger
pair aperture) by

(4b)

in the region is called . One can show that, in
the case of slanted propagating plane waves, the derivatives to
for -propagating plane waves can replaced by derivatives to
from (4a). This remark will also be important for determining
the dielectric displacement in (20). To the first-order approxi-
mation, the dependence ofon the region number is so weak
that it can be ignored. The densityis assumed to be constant.
We want to form an expression for the superposition of the solu-
tions of (4a) for all the possible propagation directions. Such an
expression is given in (5). The following represents a solution
according to (1), which includes plane-wave components into
all directions:

(5)

and are complex amplitudes of the plane-wave com-
ponents in the region that are incident to the edge from
region and are radiated from this edge to region, respec-
tively. Particle displacement and mechanical stresshave to
be continuous at the electrode edges. Therefore, the following
boundary conditions must be met:

(6a)

(6b)

If the region and is a gap and electrode region, the
electric crossed field is zero and is nonzero, respec-
tively. Therefore, the mechanical stress is given by

(6c)

with is from (3). and in (6b) mean the mechanical
stress acting on the area that is defined by the edge and direction
perpendicular to the electrode area. The mechanical stress of the
model wave acts on that area for which the wave vector is the
normal. Therefore, the continuity of mechanical stress can be
attributed to an equation including direction derivatives of the
type with respect to the normal vectorof the edge.
According to our model, one obtains

(6d)
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from (6b). Due to the limited aperture of the electrodes, the elec-
tric field has a profile in -direction expressed by

if

otherwise
aperture.

(6e)

According to our assumption, the region is solely met-
allized. Therefore, for the electric crossed fields, and

are valid. is the profile of the excitation field
perpendicular to the main propagation direction. By inserting
(5) into (6a) and using (3), one finds

(7)

Equation (7) can be held for allvalues only if all the factors
of the type in (7) are equal (phase
matching). As a result, the following relationships are obtained:

(8a)

(8b)

Equations (8a) and (8b) represent the known reflection and
refraction law, respectively. They offer connections between the
angles , , , and . Consequently, the integrals
in (7) can be attributed to only one. The exponential function
including can be written as a factor of the integrand, as shown
by the following:

(9)

In an analogous manner, one obtains

(10)

by inserting (5) into (6d). When and are assumed to be
functions of , they must be written as parts of the integrand. In
(9) and (10), can be attributed to by means of (8b).

Now, we have to solve the problem to deduce equations that
connect and with and . Again, the integral in
(9) could keep being zero for all values ofonly if its integrand
is zero, and then it results in the following:

(11)

The integrand of the integral from (10) is gained by Fourier
transformation of the excitation field profile from (6e). We ob-
tain

(12)
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III. W AVE FIELD OF AN SFIT

From (12), equations of the type

(13)

that and attribute to , , and to the excitation
field can be derived. The elements of the transfer matrixand
transduction vector are summarized in the following:

(14)

To calculate the wave field numerically, the continuum of
the angle is replaced by discrete elements. As far as the
computing time is concerned, therange is actually limited to

. Moreover, we choose a suitable numberof
elements. The convergence behavior for increasing therange
and increasing the element number must be checked. Every
element is characterized by a number, which is given by

(15)

As a result, the equations in (13) change into

Fig. 3. Wave scattering at an electrode edge, visualization of reflected and
transmitted (refracted) amplitudes.

(16)

For the numbers , , and in (16), the same range is valid
like in (15). By (16), wave components with different num-
bers in general, i.e., different directions, in adjacent regions are
linked with each other. Only in the case of are all the
propagation directions are equal or opposite. In Fig. 3, the
and vectors in (16) are explained by means of an example. In
every region , the and vectors can be com-
bined to one -dimensional vector. As a result, the combined

matrices form a matrix. As known, this reduces to
a 2 2 matrix when only one plane-wave component is taken
into account.

The calculation of the SFIT wave field is based on (16). It is
carried out in the following steps.

Step 1) The transfer matrix and transduction vector of an
electrode (finger) is calculated by matrix–matrix and
matrix–vector multiplication.

Step 2) By means of matrix–matrix and matrix–vector
multiplication of the transfer matrices and electrode
transduction vectors, all the and amplitudes
inside the SFIT are attributed to those outside the
SFIT. They are called , , , and
and are visualized in Fig. 4.

As a result, a equation system of the type

(17)

is obtained, where and are the elements of the transfer
matrix and transduction vector, respectively. The transducer
voltage is called . No waves are assumed to be incident
to the transducer. Consequently,

(18)

is valid. By inserting (18) into (17), a linear equation system for
is found, which is represented by the following:

(19)
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Fig. 4. Wave amplitudes outside an SFIT.

The determination of as a function of is the basis
for calculating the and vectors in all the transducer elec-
trodes and gaps according to (16). Afterwards, the wave field
can be calculated in the entire transducer by means of (5).

From the wave field in the th region, the only dielec-
tric displacement component , which exists according to the
model, can be calculated as follows:

(20)

We suppose that the region with the numberis an electrode
region. The current through the concerning electrode is given
by integration of over , , as shown in the following:

(21)

( electrode polarity). The total current through the trans-
ducer under consideration is obtained by summing up contribu-
tions of all the single electrodes. The total current is a linear
function of . This function yields the transducer admit-
tance.

Of course, the treatment shown here for a one-port device
can be generalized for two-port devices. As a result, input and
output currents are obtained as functions of the input and output
voltages, thereby yielding the matrix.

The foregoing analysis allows to include slanted electrodes.
On the other hand, electrode tilt is not necessary because the
tilt angle may set to zero for all electrode edges. Therefore,
the analysis described is also applicable to an interdigital trans-
ducer (IDT) with withdrawal weighted parallel electrodes, for
instance, an SPUDT.

IV. FILTER EXAMPLE

In order to test the capability of the analysis described here,
a filter consisting of two identical USFITs on 37 quartz
was investigated. Distributed acoustic reflection transducer
(DART) cells were used to implement the unidirectional effect.
The structure parameters are listed in Table I. The measured
result for on 50 is shown in Fig. 5. For comparison, the
analyzed curve is depicted in Fig. 6(a) (solid curve). The
anisotropy of the propagation velocityis taken into account
as a parabolic approximation according to the following:

(22)

TABLE I
STRUCTUREPARAMETERS OF THETEST FILTER

Fig. 5. MeasuredjS j for an SFIT filter, the parameters of which are
summarized in Table I.

According to Fig. 1, is the angle that is formed by the
wave vector of the considered plane-wave component and the
main propagation direction (dashed line in Fig. 1). The velocity
in this direction is called . In Fig. 6(a), a solid curve, i.e.,

, was used. The dashed curve in Fig. 6(a) represents
the same filter without diffraction. This case was simulated by

(ideal self-focusing). That is the reason for the es-
sentially smaller insertion loss. By comparing both curves in
Fig. 6(a), we find that the diffraction generates a dip in the pass-
band and a strong ripple at the high-frequency transition band
and in the near upper stopband. The features are also found ex-
perimentally. is actually not known inside the finger region
of the SFIT. Therefore, was calculated for , ,
and . The result is given in Fig. 6(b). The differences within
the passband are not so important, but differences are clearer in
the upper stopband. The best agreement seems to be present be-
tween and . Therefore, was chosen for the
simulation in Fig. 6(a).

The suitability of the presented analysis method for SFIT fil-
ters is expressed by the good agreement of simulation and ex-
periment.
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Fig. 6. SimulatedjS j of the filter from Table I. (a) Solid line:
 = 0:35,
dashed line:
 = �1 (self-focusing case). (b) Solid line:
 = 0:30, dashed
line: 
 = 0:40, dotted line:
 = 0:50.

V. SUMMARY AND CONCLUSIONS

The effect of diffraction on the transmission behavior of
SFITs has been described in this paper. An analysis method for
SFIT including diffraction that is based on the ASPW approach
has also been presented, which comprises the following steps.

Step 1) Generalize one-component model from [13] for
plane waves for slanted wave vectors.

Step 2) Scattering of plane waves at a slanted electrode edge.
Step 3) Describe reflection, refraction, and excitation at a

slanted electrode edge with finite aperture.
Step 4) Change from continuous angular spectrum to finite

angle elements.
Step 5) Calculate plane-wave amplitudes as functions of

transducer voltage.
Step 6) Calculate the transducer current as a function of

transducer voltage resulting in admittance () ma-
trix.

Simulated and experimental results of were compared
by means of a filter example that consists of two USFITs on
quartz. Both the curves agree well. They are characterized by a
dip in the passband and a strong ripple in the upper transition
band and upper stopband. These features are a consequence of
diffraction, as shown by an analysis neglecting diffraction. The
analysis method can also be applied for SPUDT filters.
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